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1.0 INTRODUCTION

ADS is a general purpose numerical optimization program containing
a wide variety of algorithms. The problem solved is:

Minimize F(X)

Subject to;
84(Xx) <0 j=l,m

hk(X) = 0 k=1,2

x}<x;<®]  i-1,n

The sclution of thic generzl problem is separated into three basic
levels:

1. STRATEGY - For example, Sequential Unconstrained Minimization or
Sequential Linear Programming.

2. OPTIMIZER - For example, Variable Metric methods for unconstrained
minimization or the Method of Feasible Directions for constrained
minimization.

3. ONE-DIMENSIONAL SEARCH - For example, Golden Section or Polynomial
Interpolation.

Additionally, we may consider another component to be problem
formulation. It is assumed that the engineer makes every effort to
formulate the problem in a form amenable to efficient solution by
numerical optimization. This aspect is perhaps the most important
ingredient tc the efficient use of the ADS program for solution of
problems of practical significance.

By choosing the Strategy, Optimizer and One-Dimensional Search, the
user is given considerable flexibility in creating an optimization
program which works well for a given class of design problems.

The purpose here is to describe the use of the ADS program and the
avallable program options. Section 2 identifies the available
optimization strategies, optimizers and one-dimensional search
algorithms. Section 3 defines the program organization, and Section 4
gives user instructions. Section 5 presents several simple examples to
aid the user in becoming familiar with the ADS program. Section 6 gives
a simple main program that is useful for general design applications.



2.0 PROGRAM OPTIONS

In this section, the options available in the ADS program are
identified. At each of the three solution levels, several options are
available to the user.

2.1 Strategz

Table 1 lists the strategies available. The parameter ISTRAT will
be sent to the ADS program to identify the strategy the user wants. The
ISTRAT=0 option would indicate that control should transfer directly to
the optimizer. This would be the case, for example, when using the
Method of Feasible Directions to solve constrained optimization problems
because the optimizer works directly with the constrained problem. On
the other hand, if the constrained optimization problem is to be solved
by creating a sequence of unconstrained minimizations, with penalty
functions to deal with constraints, one of the appropria’e strategies
would be used.

TABLE 1: STRATEGY OPTIONS

ISTRAT STRATEGY TO BE USED

0 None. Go directly to the optimizer.

1 Sequential uncounstrained minimization using the exterior
penalty function method (refs. 1, 2).

2 Sequential unconstrained minimization using the linear
extended interior penalty function method (refs. 3-5).

3 Sequential unconstrained minimization using the quadratic
extended interior peralty function method (refs. 6, 7).

4 Sequential unconstrained minimization using the cubic

extended interior penalty function method (ref. 8).

5 Augmented Lagrange Multiplier method (refs. 9-13).

6 Sequential Linear Programming (refs. 14, 15).

7 Method of Centers (method of inscribed hyperspheres)
(ref. 1o).

8 Sequential Quadratic Programming (refs. 11, 17, 18).

2.2 Optimizer

Table 2 lists the optimizers availabie. IOPT is the parameter used
to lndicate the optimizer desired.



TABLE 2: OPTIMIZER OPTIONS

IOPT OPTIMIZER TO BE USED

0 None. Go directly tc the onme-dimengional search. This
option should be used only for program development.

1 Fletcher-Reevez algorithm for unconstrained minimization
(refs. 19).

2 Davidon-Fletcher-Powell (DFP) variable met-ic method for
unconstrained minimization (refs. 20, 21).

3 Broydon-Fletcher-Goldfarb~Shanno (BFGS) variable metric
method for unconstrained minimization (refs. 22-25).

4 Method of Feasible Directions (MFD) for comstrained
minimization (refs. 26, 27).

5 Modified Method of Feasible Directions for constrained

minimization (ref. 28).

In choosing the optimizer (as well as strategy and ome-dimensional
search) it is assumed that the user is knowledgeable enough to choose
an algorithm consistent with the problem at hand. For example, a
variable wmetric optimizer would not be used to solve constrained
problems unless a strategy is used to create the equivalent
unconstrained minimization task via some form of penalty function.

2.3 One-Dimengional Search
Table 3 lists the one-dimensional search options available for
unconstrained and constrained problems. Here IONED identifies the

algorithm to be used.

TABLE 3: ONE-DIMENSIONAL SEARCH OPTIONS

IONED ONE-DIMENSIONAL SEARCH OPTION (refs. 1, 29, 30)

1 Find the micimum of an unconstrained function using the
Golden Section method.

2 Find the minimum of an unconstrained function using the
Golden Section method followed by polynomial interpolation.

3 Find the minimum of an unconstrained function by first
finding bounds and then using polynomiasl interpolation.

4 Find the minimum of an unconstrained function by polynomial

interpolation/extrapolation without first finding bounds on
the solution.

5 Find the minimum of an comstrained function using the
Golden Section method.

6 Find the minimum of an cczatrained function using the
Colden Section method followed by polynomial interpolation.

7 Find the minimum of an comstrained function by first
finding bounds and then using polynomial interpolation.

8 Find the minimum of an constrained function by polynomial

interpolation/extrapolation without first finding bounds on
the solution.
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2.4 Allowable Combinations of Algorithms

Not all combinations of strategy, optimizer and one-dimensional
search are meaningful. For example, constrained one-dimensional search
is not meaningful when minimizing unconstrained functions.

Table &4 identifies the combinations of algorithms which are
available in the ADS program. In this table, an X is used to denote an
acceptable combination of strategy, optimizer and one-dimensional
search. An example is shown by the heavy line on the table which
indicates that constrained optimization is to be performed by the
Augmented Lagrange Multiplier Method (ISTRAT=5), using the BFGS
optimizer (I1OPT=?) and polynoamial interpolation with bounds for the one-
dimensional search (IONED=3). From the table, it is clear that a large
number of possible combinations of algorithms are available.

TABLE 4: PROGRAM OPTIONS

OPTIMIZER
STRATEGY 1 2 3 4 5
0 X X X X X
1 X X X 0 0
2 X X X V] 0
3 X X X 0 0
4 X X X 0 0
(:)l---lx - X -i’»(:) 0 0
6 0 0 0 X X
7 0 0 0 X X
8 0 0 0 X X
ONE-D SEARCH
1 X X X 0 0
2 X X X 0 0
3 - X x ® o 0
4 X X X 0 0
5 0 0 0 X X
6 0 0 C X X
7 0 0 0 X X
8 0 0 0 X X

Appendix A contains an znnotated version of Table 4 for convenient
reference once the user is ‘amiliar with ADS.

To conserve computer storage, it may be desirable to use only those
subroutines in the ADS sys.em needed for a given combination of ISTRAT,
IOPT and IONED. Appendix C provides the information necessary for this.
Appendix D lists the subroutines with a very brief description of each.

3.0 PROGRAM FLOW LOGIC

ADS is called by a user-supplied calling program. ADS aoes not
call any user-supplied subroutines. Instead, ADS returns control t. the
calling progras. when function or gradient information is needed. The
required information is evaluatcd and ADS is8 called again. This
provides considerable flexibility in program organization and restart
capabilities.
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ADS can be used in four principal modes:

1. Default Control parameters and finite difference gradients.

2. Over-ride default parameters, use finite difference gradieants.
3. Default control parameters and user-supplied gradients.

4. Over-ride default parameters and user~supplied gradient.

The first mode is the simplest “black box™ approach. In the second
mode, the user over-rides the default parameters to "fine tune” the
program for efficiency. In modes 3 and 4, the user supplies all needed
gradient information to the program.

Figure 1 is the program flow diagram for the simplest use of ADS.
The user begins by defining the basic control parameters and arrays (to
be described in Section 4). The gradient computation parameter, IGRAD,
is set to zero to indicate that finite difference gradients will be
used. The information parameter, IN®YO, is initialized to zero and ADS
is called for optimization. Whenever the values of the objective, OBJ,
and constraints, G(I), I=1,NCON, are required, control is returned to
the user with INFO=1l. The functifons are then evaluated and ADS is
called again. When INFO=0 is returned to the user, the cptimization is
complete.

SEGIN
DIMENSION ARRAYS
DEFINE BASIC VARIABLES
iGRAD *— 0

INFO «— 0

(> CALL ADS (INFO . . . )
NO YES
EVALUATE EXIT
OBJECTIVE OPTIMIZATION
AND IS COMPLETE
CONSTRAINTS

Figure l: Simplified Program Usa~~»; All Default
Parameters and Finite Differenc Gradients



Figure 2 is the program flow diagram for the case where the user
wishes to over-ride one or more internal parameters, such as convergence
criteria or maximum number of iteratious. Here, after initialization of
basic parameters and arrays, the information parameter, INFO, is set to
~2. ADS is then called to initialize all internal parameters aund
allccate storage space for internal arrays. Control is then returned to
the user, at which point these parameters, for example coanvergence
criteria, can be over-ridden if desired. At this point, the information
parameter, INFO, will have a value of -1 and should not be changed. ADS
is then called again and the optimization proceeds. Section 4.3
provides a list of internal parameters which may be modified, along with
their locations in the work arrays WK and IWK.

BEGIN
DIMENSION ARRAYS
DEFINE BASIC VARIABLES
IGRAD <— 0
INFO <= -2
CALL ADS (INFO . . . )
OVER-RIDE DEFAULT PARAMETERS

WHICH ARE NOW CONTAINED IN
ARRAYS WK AND IWK IF DESIRED

— CALL ADS (INFO . . . )
NO YES
EVALUATE EXIT
OBJECTIVE OPTIMIZATION
AND IS COMPLETE
CONSTRAINTS

Figure 2: Program Flow Logic; Over-ride Default
Parameters, Finite Difference Gradients

Figure 3 1s the flow diagram for the case where the user wishes to
provide gradient information to ADS, rather than having AUS calculate
this information using finite difference methods. 1In Figure 3, it is
also assumed that the user will over-ride some internal parameters, 8o
the difference between Figures 2 and 3 is that IGRAD is now set to 1l and

VARG e Ty .
OF POOR Gur.i.ivy
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the user will now provide gradients during optimization. If the user
does not wish to over-ride any default parameters, INFO 1s initialized
to zero and the first call to ADS is owi:ted (as in Figure 1). Now,
when control is returned to the user, the information rarameter will
have a value of 1 or 2 (if INFO=0, the optimization is complete, as
before). If INFO=1, the objective and constraint functions are
evaluated and ADS is called again, just as in Figure 2. If INFO=2, the
gradient, DP, of the objective function is evaluated as well as the
gradients of NGT constraints definmed by vector IC.

BEGIN
DIMENSION ARRAYS
DEFINE BASIC VARIABLES
IGRAD <— 1
INFO «&— -2
CALL ADS (INFO . . . )
OVER-RIDE DEFAULT PARAMETERS

WHICH ARE NOW CONTAINED IN
ARRAYS WK AND IWK IF DESIRED

(—————————3»CALL ADS (INFO . . . )
YES EXIT
INFO = O OPTIMIZATION
IS COMPLETE
NO
YES NO
EVALUATE EVALUATE
OBJECTIVE GRADIENT OF
AND OBJECTIVE
CONSTRAINTS AND SPECIFIED
l CONSi?AINTS

Figure 3: Program Flow Logic; Over-ride Default
Parameters and Provide Gradients



4.0 USER INSTRUCTLONS

In this section, the use of the ADS program is outlined. The
FORTRAN Call statement to ADS is given first, and then the parameters in
the calling statement are defined. Section 4.3 identifies parameters
that the user may wish to over-ride to make more effective use of ADS.
Arrays are designated by boldface print.

4.1 Calling Statement

ADS 1is invoked by the following FORTRAN calling statement in the
user's program:

CALL ADS (INFO,ISTRAT,IOPT,IONED,IPKINT,IGRAD,NDV,NCON,X,
~ VLB,VUB,0BJ,G, IDG,NGT, IC,DF,A,NRA,NCOLA ,¥K, NRWK , IWK, NRIWK)

4.2 Definitions of Parameters in the ADS Calling Statement

Table 5 lists the parameters in the calling statement to ADS. Where
arrays are defined, the required dimension size is given as the array
argument.

TABLE 5: PARAMETERS IN THE ADS ARGUMENT LIST
PARAMETER DEFINITION

INFO Information parameter. On the first call to ADS, INFO=0 or -2.
INFO=0 is used 1f the user does not wish to over-ride internal
parameters and INFO=-2 ig used if internal parameters are to be
changed. When control returns form ADS to the calling program,
INFO will have a value of 0, 1, or 2. If INF0=0, the
optimization is complete. If INFO=1, the user must evaluate
the objective, OBJ, and constraint functions, G(I), I=1,NCON,
and call ADS again. If INFO=2, the user must evaluate the
gradient of the objective and the NGT constraints identified by
the vector IC, and call ADS again. If the gredient calculation
control, IGRAD=0, INFO=2 will never be returned from ADS, and
all gradient information is calcluated by finite difference
within ADS.

ISTRAT Optimizetion strategy to be used. Avai.able options are
identified in Tables 1 and 4.

10PT Optimizer to be useds Available options are identified in
Tables 2 and 4.
IUNED One~dimensional search algor-ithm to be used. Available options

are identified in Tables 3 &¢nd 4.



TABLE 5 CONTINUED: PARAMETERS IN THE ADS ARGUMENT LIST
PARAMETER DEFINITION

IPRINT A four~digit print control. IPRINT=I1JKL where I, J, K and L

have the following definitions:
I ADS system print control.

0 - No print.

1 - Print initial and final inforamation.

2 - Same as 1 plus parameter values and storage needs.

3 - Same as 2 plus scaling information calculated by ADS.
J Strategy print control.

0 - No print.

Print initial and final optimizaticn information.

~ Same as 1 plus OBJ and X at each iteration.

- Same as 2 plus G at each iteration.

-~ Same as 3 plus intermediate information.

- Same as 4 plus gradients of constraints.

K Optimizer print control.

0O - No print.

~ Priat initial and final optimization information.

- Same as 1 plus OBJ and X at each iteration.

~ Same as 2 plus constraints at each iteration.

- Same as 3 plus intermediate optimization and

one~dimensional search information.
5 - Same as 4 plus gradients of constraints.
L One-Dimensional search print control, (debug only).
0 - No print.
1 ~ One-dimensional search debug information.
2 - More of the same.
Example: IPRINT=3120 corresponds to I=3, J=1, K=2 and L=0.
NOTE: IPRINT can be changed at any time control is returned to
the user.

IGRAD Gradient calculation control. If IGRAD=0 is input to ADS, all
gradient computations are done within ADS by first forward
finite diffrrence. If IGRAD=1, the user will supply gradient
information as indicated by the value of INFO.

(U R Ve R

&S W -

NbV Numbe - of design variables contained in vector X. NDV is the
same as n in the mathematical problem statement.
NCON Number of constraint values contained in array G. NCOXN jis rhe

same as m+ in the mathematical problem statement given in
Section 1.0. NCON=0 is allowed.

X(NDV+1) Vector containing the design variables. On the first call to
ADS, this is the user's initial estimate to the design. On
return from ADS, this is the design for which function or
gradient values are required. On the final return from ADS
(INFO=0 is returned), the vector X contains the optimum design.

VLB(NDV+1) Array containing lower bounds on the design variables, X. If
no lower bounds are imposed on one or more of the design
variables, the corresponding component(s) of VLB must be set to
8 large negative number, say -1.0E+15.

VUB(NDV=~; Ar.ay containing upper bounds on the design variables, X. If
ne upper bounds are imposed cn one or more of the design
.ariables, the corresponding component(s) of VUB must be set to
¢ a+rge positive number, say 1l.0E+15.



TABLE 5 CONTINUED: PARAMETERS IN THE ADUS ARGUMENT LIST
PARAMETER DEFINITION

0BJ

G(NCON)

Value of the objective function corres.oading to the current
values of the design variables containe. in X. On the first
call to ADS, OBJ need not be defined. ADS will veturn a value
cof INFO=1 to indicate that the user must evaiu te OBJ and call
ADS again. Subsequently, any time a value of INFO=l is
returned from ADS, the objective, 0BJ, must be evaluated for
the current design and ADS must be called again. OBJ has the
same meaning as F(X) in the mathematical problem statement
given in Section 1.0.

Array containinrg NCON constraint values corresponding to the
current design contained in X. On the first call to ADS, the
congstraint values need not be defined. On return from ADS, if
INFO=1, the constraints must be evaluated fo. the current X and
ADS called again. If NCON=0O, array G should be dimensioned to
unity, but no constraint values need to be prcvided.

IDG(NCON) Array containing identifiers indicating the type of the

NGT

IC(NGT)

constraints contained in array G.

“DG(1) = -2 for linear equality constraint.

IDG(I) - -1 for nonlinear equality constraint.

IDG(I) = 0 or L for norlinear inzquality constraint.

IDG(I) = 2 for linear inequality constraint.

NOTE: In ADS Version 1.00, equality constraints are only
operational fcr SUMT methods, ISTRAT=1,5.

Number of constraints for which gradients must be supplied.

NGT 1is defined by ADS as the minimum of NCOLA and NCON and is
returned vo the user.

Array identifying constraints for which gradients are required.
IC 18 defined by ADS and returned to the user. If INFC=2 1is
rveturned to the user, the gradient of the objective and the NGT
constraints must be evaluated and stored in arrays DF and A,
respectively, and ADS must be called again.

DF(NDV+1l) Array containing the gradient of the objective corresponding

to the current X. Array DF wust be defined by the user when
INFO=2 is returned from ADS. This will not occur if IGRAD=0,
in which case array DF is e asiuated by ALS.

A(NRA,NCOLA) Array c-ntaining the gradirncs of the NGT constraints

NRA
NCOLA

WK(NRWK)

identified & array IC. That 1is, column J of array A contains
rhe gradient of constraint numbe K, where K=IC(J). .JArray A
must be defined by che user when INFO=2 is returned from ADS
and when NGT.GT.0. This will not occur if IGRAD=0, in which
case, array A is evaluated by ADS. NRA is the dimensioned
rowo of array A. NCOLA {8 the dimersioned columns of array A.
Dimensioned rows of array A. NRA must be at iez2st NDV+1.
Dimensioned columns of array A. NCOLA <hould be at least the
minimum of NCON and 2*NDV. 1If encugh storage is available, and
if gradients ave easily provided or are calculated by flinite
difference, tuen NCOLAsNCONHNDV is ideal.

User provided work array for real variables. Array WK is used
to stere internal scalar variables and arrays used by ADS. WK
must be dim:nsioned at least 100, but usually much l.rger. IS
the use h 8 not provided enough storage, ADS will print the
appropriate message and terminate the optimization.

10



TABL.. 5 CONCLUDED: PARAMETERS IN THE ADS ARGUN .nT LIST
PARAMETER DEFINIT1ON

NRWK Dimensioned size of work array WK. A good estimate is
NRWK = 500 + 10*(NDV+NCON) + NCOLA*(NCOLA+3) +N*(N/2+1), where
N = MAX(NDV,NCOLA).

IWK(NRIVK) User provided work array for integer variables. Array IWK is
used to store internal scalar variables and arrays used by ADS.
IWK must be dimensioned at least 200, but usually much larger.
If the user has not provided enough storage, ADS will princ the
appropriate message and terminate the optimization.

NRIWK Dimensioned size of work array IWK. A good estimate is
NRIWK = 200 + NDV - NCON + N + MAX(N,2*NDV), where
N = MAX(NDV,NCOLA).

4.3 Over-Piding ADS Default Parameters

Various internal parameters are defined oi, the first call to ADS
which work well for the "average” optimization task. However, it is
often desirable to change these in order o gain maximum utility of the
program. This mode of operation is shown in Figures 2 and 3. After the
first call to ADS, various real and integer scalar parameters are stored
in arrays WK and IWK respectively. Those which the user may wish to
change are listed in Tables 6 through 9, together with their default
values and definitions. 1f the user wishes to change any of these, the
appropriate component of WK or IWK is simply re-defined after the first
call to ADS. For example, if the relative convergence criterion,
DELOBJ, is to be changed to 0.002, this is done with the FORTRAN
statement;

WK(12) = C.002

because WK(12) contains the value of DELOBJ.

11



TABLE 6: REAL PARAMETERS STORED IN ARRAY WK
MODULES WHERE USED

PARAMETER LOCATION DEFAULT ISTRAT 10PT LONED
ALAMDZ 1 0.0 5 - -
BETAMC 2 0.0 7 - -
crl 3 -0.03 - 4,5 -
CTL 4 -0.005 - 4,5 -
CTLMIN 5 0.001 - 4,5 -
CTMIN 6 0.01 - 4,5 -
DABALPZ 7 0.0001 - ALL -
DABOBJ 8 ABS(F0)/10000  ALL - -
DABOBM 9  ABS(F0)/1000 ALL - -
DABSTR 10 ABS(F0)/10000  ALL -
DCLALP3 11 0.005 - - 1,2,5,6
DELOBJ 12 0.001 - ALL. -
DLLOBM 13 0.01 ALL - -
DELSTR 14 0.001 ALL - -
DLOBJ1 1 0.1 - ALL -
DLOB "2 16  1000.0 - ALL -
DX1 17 0.01 - ALL -
DX2 18 0.? - ALL -
EPSPEN 19 -0.05 2,3,4 - -
EXTRAP 20 5.0 - - ALL
FDCH 21 0.01 - ALL -
FDCHM 22 0.00" - “ALL -
GMULTZ 23 10.0 8 .- -
PSAIZ 24 0.95 8 - -
RMULT 25 5.0 1,5 - -
RNVLMZ 26 0.2 6,7,8 - -
EP 27 10.0 1,5 - -
RPMAX 28 1.0E+10 1,5 - -
RPMULT 29 0.2 1,5 - -
RPPMIN 30 1.0E-10 2,3,4 - -
RPPRIM 31 100.0 2,3,4 - -
SCFO 32 1.0 ALL ALL ALL
SCLMIN 33 0.001 ALL ALL ALL
STOL 34 0.001 - 4,5 -
TYETAZ 35 0.1 - 4,5 -
XMULT 36 2.618034 ~ - 1,2,3,5,6,7
ZRD 37 0.00001 ALL ALL ALL

1 Uf I0PT=4, CT=-0.1

2 1f IONED=3 or 8, DABALP=0.001

3 1f IONED=3 or 8, DELALP=0.05

NOTE: FO is the objective furction value for the initial desi...

12



TABLE 7:

DEFINITIONS OF REAL PARAMETERS CONTAINED IN ARRAY WK

PARAMETER DEFINITION

ALAMDZ

BETAMC

CT

CTL
CTLMIN
CTMIN
DABALP

DABOLJ

DABOBHA

DABSTR

DELALP

DELOBJ

DELOBM

DELSTR
DLOBJ1

DLOBJ2

DX1

DX2

EPSPEN

EXTRAP

Initia) estimate of the Lagrange Multipliers in the Augmented
Lagrange Multiplier Method.

Additional steepest descent fraction in the method of centers.
After moving to the center of the hyperspkere, a steepest
descent move is made equal to BETAMC times the radius of the
hypersphere.

Constraint tolerance in the Method of Feasitle Directions or
the Moaified Method of Feasible Direction. A constraint is
active if its numerical value is more po:r .ve than CT.

Same as CT, but for linear constraints.

Same as CTMIN, but for linear constraints.

Minimum constraint tolerance for nonlinear constraints. If a
constraint is more positive than CTMIN, it is considered to
be violated.

Absolute convergence criteria for the one~dimensional search
when using the Golden Section method.

Maxiamum absolute change in the objective between twc
consecutive iterations to indicate convergence in
optimization. .
Absolute convergence criterion for the optimization sub-
problem when using sequential minimization techniques.

Same as DABOBJ, but used at the strategy level.

Relative czonvergence criteria for the one-dimensional search
when using the Golden Section method.

Maximem relative change in the objective between two
congsecutive iterations to indicate convergence in
optimization.

Relative convergence criterion for the optimization sub-
problem when using sequential minimization techniques.

Same as DELOBJ, but used at the strategy level.

Relative change in the objective function attempted on the
first optimization iteration. Used to estimate initial move
in the one-dimensional search. Updated as the

optimization progresses.

Absolute change in the objectlve function attempted on the
first vptimization iteranion. Used to estimate initial move
in the one~dimensional gearch. Updated as the

optimization progresses.

Maximum relative change In a design variable atterpted on the
first optimization iteration. Used to cstimate the initial
move in the one-~dimension:z) search. Updated as the
optimization progresses.

Maximum absolute chenge in a design variable attempted on the
first optimization iteration. Used to estimate the initial
move in the cne-dimensional search. Updated as the
optimization progresses.

Initial transition point for extended penalty function
methods. Updated as the optimization progresses.

Maximum multiplier on the one-dimensional search parameter,
ALPHA in the ore-dimensional search using polynomial
interpolation/extrapolation.

13



TABLE 7 CONCLUDED: DEFINITIONS OF REAL PARAMETERS CONTAINED IN ARRAY WK
PARAMETER DEFINITION

FDCH

Relative finite difference step when calculating gradients.

FDCHM Minimum absolute value of the finite difference step when
calculating gradients. This prevents too small a step when
X(I) is near zero.

GMULTZ 1Iritial penalty parameter in Sequential Quadratic programming.

P3A1IZ Move fraction to avoid constraint violaticns in Sequential
Quadratic Programming.

RMULT Penalty function multiplier for the exterior penalty function
method. Must be greater than 1.0.

RMVLMZ 1Initial relative move limit. Used to set the move limits in
sequential linear prozramming, w~thod of inscribed
hyperspheres and sequential qualratic programming as a
fraction of the value of X(I), I=1,NDV.

RP Initial penalty parameter for the exterior penalty function
method or the Augmented Lagrange Multiplier method.

RPMAX Maximum value of RP for the exterior penalty function method
or the Augmented Lagrange Multiplier method.

RPMULT Multiplier on RP for consequtive iterationms.

RRPMIN Minimum value of RPPRIM to indicate convergence.

RPPRIM 1Initial penalty parameter for extended interior penalty
function methods.

SCFO The user—-supplied value of the scale factor for the objective
function if the default or calculated value is to be over-
ridden.

SCLMIN Minimum numerical value of any scale factor allowed.

STOL Tolerance on the components of the calculated search direction
to indicate that the Kuhn-Tucker conditions are satisfied.

THETAZ Nominal value of the push-off factor in the Method of Feasible
Directions.

XMULT Multiplier on the move parameter, ALPHA, in the one- -
dimensional search to find bounds on the solution.

ZRO Numerical estimate of zero on the computer. Usually the
default value is adequate. If a computer with a short word
length 1s used, ZRO=1.0E~4 may be preferred.

TABLE 8: INTEGER PARAMETERS STORED IN ARRAY IWK
MODULES WHERE USED
PARAMETER LOCATION DEFAULT  ISTRAT IOPT -  IONED

ICNDIR 1 NDV+1 - ALL -

ISCAL 2 1 ALL ALL ALL

™ X 3 40 - ALL -

ITRMOP 4 3 - i,2,3 -

ITRMST 5 2 ALL - -

JCNED 6 IONED 8 - -

JTMAX 7 20 ALL - -

14



TABLE $: DFFINITIONS OF INTEGER PARAMETERS CONTAINED IN ARRAY IWK
PARAMETES. DEFINITION

ICNDIR Restart parameter for conjugate direction and variable metric
methods. Unconstrained minimization is restarted with a
steepest descent direction every ICNDIR iterationms.

ISCAL Scaling parameter. If ISCAL=0, no scaling is done. If
ISCAL=1, the design variables, objective and constraints are
scaled automatically.

IT4AX  Maximum number of iterations allowed at the optimizer level.
I"RMG: The number of consecutive iterations for which the absolute or
relative convergence criteria mist be met to indicate

convergence at the optimizer level.

ITEMEYT  The nuaber of consecutive iterations for which the absolute or
relative convergence criteria must be met to indicate
convergence at the strategy level.

JCNED The one-dimensional search parameter (IONED) to be used in the
Sequential Quadratic Programming method at the strategy level.

ITMAX Maximum number of iterations allowed at the strategy level.

) A

4.4 User~Supplied Gradients

If it is convenient to supply analytic gradients to ADS, rather
than using internal finite difference calculations, considerable
optimization efficiency is attainable. If the user wishes to supply
gradi nts, the flow logic given in Figure 3 1s used. In this case, the
iaformation parameter, INFO, will be returned to the user with a value
of INFO=2 when gradients are needed. The user calculates the NGT
gradie its of the constraincts identified by array IC and stores these in
the ficat NGT columns of array A. That is column I of A contains the
gradle .t of constraint J, where Js=IC(I).

4.5 Resterting ADS

Whea solving large and complex design problems, or when multi-level
optimization 18 being performed, it is often desirable to terminate the
optimizacion process and restart from that point at a later time. This
is 2aslly accomplished nsing the ADS program. Figure 4 provides the
bas:.c flowchurt for “his process. Whenever control is returned from ADS
to the caliiag prog« .., the entire contents of the parameter list are’
written to cisk ‘-t a file in a database management system). The
program is the:r itopped at this point. Later, the program is restarted
by reading the information back from disk and continuing from this
point. If optimization 1is performed as & sub-problem within analysis,
the informacion from the system level optimization is written to disk
and the anaysis 18 called. The analysis module can then call ADS to
perfo- the sub-optimization task. Then, upon return from analysis, the
8ys em leve. information is read back from stor-ze and the optimization
proceeds as asual. From this, it is seen that considerable flexibility
exists for multi-Tevel and multi-discipline optimization with ADS, where
the ADS prc:r. s 18 used for multiple tasks within the overall design
process.
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The user may wish to stop the optimization at specific times during
the process. The parameter IMAT is array IWK gives general information
regarding the progress of the optimization. Appendix B provides details
of this parameter as well as other parameters stored in WK and IWK which
may be useful to the experienced user of ADS.

BEGIN

'

YES S THIS A
RESTART?

NO

CALL ADS (INFO,. . . )

v

READ CONTENTS OF
ADS PARAMETER LIST
FROM DISK FILE

STOP FOR
LATER RESTART

YES WRITE CONTENTS OF
ADS PARAMETER LIST
ONTO DISK FILE

EXIT

K

CONTINUE
Figure 4: Restarting ADS

4.6 Choosing ‘n Algerithm

One a{fiiculty with a program such as ADS, which provides numerous
options, is that of picking the beet combination of algorithms to solve
a8 given problem. While it is not possible to provide a concise set of
rules, some general guidelines are offered here based on the author's
experience. The user is strongly encouraged to try many different

ptions in order to gainm ramiliarity with ADS and to improve the
probability that the best combination of algorithms is found for the
particular class of problems being solved.
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UNCONSTRAINED FUNCTIONS (NCON=0, Side Comstraiats OK)
ISTRAT=0

Is computer storage very limited?
Yes - 10PT=l. Are function evaluations expensive?
Yes - Is the objective kiuiown to be approximately quadratic?
Yes - LONED=4
No - IONED=3
No - IONED=1 or 2
No - Is the analysis iterative?
Yes - IOPT=3. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?
Yes — IONED=4
No - IONED=3
No - IONED=1 or 2
Nc - 10PT=2 or 3. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?
Yes - IONED=4
No - IONED=3
No - IONED=1 or 2

CONSTRAINED FUNCTIONS (NCON> 0)

Are relative minima known to exist?
Yes - ISTRAT=1, IOPT=3. Are function evaluations expensive?
Yes - IONED=3
No - IONED=1 or 2
No =~ Are the objective and/or constraints highly nonlinear?
Yes ~ Are function evaluations expeusive?
Yes - ISTRAT=0, IOPT=4, IONED=7
No - ISTRAT=2, 3 or 5, IOPT=2 or 3, IONED=1 or 2
No - Is the design expected to be fully-constrained?
(i.e. NDV active constraints at the optimum)
Yes - ISTRAT=6, IOPT=5, IONED=6
No =~ Is the analysis iterative?
Yes -~ ISTRAT=0, IOPT=4, IONED=7 or
ISTRAT=8, IOPT=5, IONED=/
No - ISTRAT=0, IOPT=5, IONED=7 or
ISTRAT=8, 10PT=S5, IONED=7

GENERAL APPLICATIONS

Often 1little 1is known about the nature of the problem being solved.
Based on experience with a wide variety of problems, a very direct
approack is given here for using ADS. The fo9llowing table of parameters
is offered as a vequence of algorithms. When using ADS the first few
times, the user may prefer to run the cases given here, rather than
using the decision approach given above. It is assumed here that
a constrained optimization problem is being solved. If the problem is
unconstrained, ISTRAT=Q, IOPT=3 and IONED=2 or 3 is recommended.
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ORI o o ISTRAT IOPT IONED IPRINT

OF POOR Qur- -

8 5 7 2200
0 5 7 2020
0 4 7 2020
6 5 6 2200
5 3 3 2200
2 3 3 2200
1 3 3 2200

5.0 EXAMPLES

Consider the following two-variable optimization problem with two
nonlinear constraints:

Minimize OBJ = 2J§Al + 48
Subject to;  G(1) = _2A5 * ¥2a, -

24y {A) + V2ay)

G(2) = L -1
2[A] + y2a;]

0.01 < Ay < 1.0E+20 1=1,2

This 1is actually the optimization of the classical 3-bar truss shown in
Figure 5 where, for simplicity, only the tensile stress constraints in
members 1 and 2 under load P; are inci._.>d. The loads, P{ and Pj, are
applied separately and the material specific weight is 0.1 1b. per cubic
inch. The structure 1is required to be symmetric so X(1) corresponds to
the cross-sectional area of members 1 and 3 and X(2) corresponds to the
crogss—sectional area of member 2.

I

“—— 10 m.-—qéf—m {n. —3

10in.

v \

P; = 20000 1b. P, = 20000 1b.

Figure 5: Three-Bar Truss
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3.1 Example 1; All Default Parameters

Figure 6 gives the FORTRAN program to be usec with ADS to solve
this problem. Only one line of data is read by this program to define
the values of ISTRAT, IOPT, IONED and IPRINT and the FORMAT is 4I5.
When the optimization 18 complete, another case may be run by reading a
new get of data. The program terminates when ISTRAT=-1 is read as data.

Figure 7 gives the result. obiained with ISTRAT=0, IOPT=4, IONED=7
and IPRINT=1000. The reade- .8 encouraged to expevriment with this
program using various combinations of the options from Table 4.

5.2 Fxarnle 2; Initial Parameters Are Modified

The 3-bar truss designed in Section 5.1 is now designed with the
following changes in the internal parameters:-

Parameter New Value Location in Hk - Location in IWK

CT -0.1 3 -
CTMIN 0.002 6 -
T''ETAZ 1.0 35 -
ITRMOP 2 - 4

The FORTRAN program used here 1s shown in Figure 8 and the results
are given in Figure 9.

5.3 Example 3; Gradients Supplied by the User

The 3-bar truss designed in Sections 5.1 and 5.2 is designed here
with user-supplied gradients. The parameters CT, CTMIN, CTMIN, THETAZ
and ITRMOP are over-ridden as in Section 5.2. Also, now IPRINT=2020 to
provide a more typical level of optimization output.

The FORTRAN program associated with this example is given in
Figure 10. Figure 11 gives the results.
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SIMPLIFIED USAGE OF ADS. THE THREE-BAR TRUS3.
REQUIRED ARRAYS.
DIMENSION X(3),VLB(3),VUB(3),6(2),IDu(2),IC(2),DF(3),A(2,2),
1 WK(1000),IWK(500)
C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK=1000
NRIWK=500
C PARAMETERS.
IGRAD=0
NDV=2
NCON=2
c INITIAL DESIGN.
X(1)=1.
X(2)=1.
c BOUNDS.
VLB(1)=.01
VLB(2)=.01
VGB(1)=1.0E+20
VUB(2)=1.0E+20
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0
IDG(2)=0
c INPUT.
READ(5,30) ISTRAT,IOPT,IONED,IPRINT
C OPTIMIZE.
INFO=0
10  CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VUB,0BJ,G,IDG,NGT,IC,DF,A, NRA,NCOLA,WK, NRWK, IWK, NRIWK)
IF (INFO.EQ.0) GO TO 20
Cc EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*X(1)+SQRT(2.)*X(2)))~1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.

OO0

c GO CONTINUE WITH OPTIMIZATION.
GO TO 10

20 CONTINUE

c PRINT RESULTS.
WRITE(6,40) OBJ,X(1),X(2),G6(1),6(2)
STOP

30  FORMAT (415)

40  FORMAT (//5X,7HOPTIMUM,5X,5HOBJ =,E12.5//5X,6HX(1) =,E12.5,5X,
1 6HX(2) =,E12.5/5X,6HG(1) =,E12.3,5X,6HG(2) =,E12.5)
END

Figure 6: Example 1; All Default Parameters

o

OriGIMAL PAGE (S
OF POOR QUALITY
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AAAAA DDDDDD
A A D D
A A D D
AAAAAAA D D
A A D D
A A D D
A A DDDDDD

FORTRAN

SSSSES
S
S
< . R
SSSS.S o
S
588888

PROGRAM

FOR
AUTOMATED DESIGN SYNTHESTIS
VERSION 1.00
CONTROL PARAMETERS
ISTRAT = 0 IOPT = 4 TONED = 7 IPRINT = 1000

IGRAD = 0 NDV = 2

NCON = 2

OPTIMIZATION RESULTS

-———

OBJECTIVE FUNCTION VALUE 0.26279E+01
DESIGN VARIABLES
LOWER UPPER
VARIABLE BOUND VALUE BOUND
1 0.10000E-01  0.78131E+00 0.10000E+21
2 0.10000E-01 0.41804E+00  0.10000E+21

DESIGN CONSTRAINTS
1) 0.4248E-02 -0.6357E+00

FUNCTION EVALUATTONS = 55

OPTIMUM OBJ = 0.26279E+01

X(1l) = 0.78131E+00
G(1) = 0.42477E-02

Figure 7: Example 1; Qutput

21

X(2) = 0.41804E+00
G(2) ==0.63570F+00



Cc USAGE OF ADS. OVER-RIDING DEFAULT FARAMETERS.
c THE THREE-LAR TRUSS.
c REQUIRED ARRAYS.
DIMENSION X?3),VLE(3),VUB(3),6(2),IDG(2),IC(2),DF(3),A(2,2),
1 WK(1000),IWK(500)
C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK~1000
NRIWK=500
C PARAMETERS.
IGRAD=0
NDV=2
NCON=2
c INITIAL DESIGN.
X(1l)=1.
X(2)=1.
o BOUNDS.
VLB(1)=.01
VLB(2)=.0l
VUB(1)=1.0E+20
VUB(2)=1.0E+20
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0
IDG(2)=0
C INPUT.
READ(S,30) ISTRAT,IOPT,IONED,IPRINT
C INITIALIZE INTERNAL PARAMETERS.
INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 vuB,0BJ,G,1DG,NGT,IC,DF,A,NRA, NCOLA,WK, NRWK , IWK, NRIWK)
C OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP.
WK(3)=-0.1
WK(6)=0.002
WK(35)=1.0
IWK(4)=2
C OPTIMIZE.
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VuB,0BJ,G,1DG,NGT,IC,DF,A,NRA, NCOLA,WK, NRWK, IWK, NRIWK)
IF (INFO.EQ.0) GO TO 20
c EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(L)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*X(1)+SQRT(2.)*X(2)))~1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))~-1.

c GO CONTINUE WITH OPTIMIZATION.
Go TO 10

20 CONTINUE

c PRINT RESULTS.
WRITE 6,40) 0OBJ,X(1),X(2),G(1),G(2)
STOP

30 FORMAT (415)

40 FORMAT (//5X,7HOPTIMUM,5X,5H0BJ =,E12.5//5X,6HX (i) =,E12.5,5X,
1 6HX(2) =,E12.5/5X,6HG(1) =,E12.5,5%,6HG(2) =,E1:.5)
END

Figure 8: Example 2; Modify Default Parameters
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FORTRAN PROCGRAM
FOR
AUTOMATED DESIGN SYNTHEGSTIS

VERSION 1.00

CONTROL PARAMETERS
ISTRAT = 0 IOPT = 4 IONED = 7 IPRINT = 1000
IGRAD = 0 NDV NCON = 2

(]
~

OPTIMIZATION RESULTS

C3JECTIVE FUNCTION VALUE 0.26396E+01

DESIGN VARIABLES

LOWER UPPER

VARIABLE BOUND VALUE BOUND
1 0.:"000E-01 0.78786E+00  0.10000E+21
2 0.10000E-01  0.41121E+00  0.10000E+21

DESIGN CONSTRAINTS
1) ~0.2431E-03 -0.6349E+00

FUNCTION EVALUATIONS = 20

OPTIMUM OBJ = 0.26396E+C1
X(1) = 0.78786E+00 X{2) = 0.41121E+00
G(1) =-0.24313E-03 G(2) =-0.63488E+00

Figure 9: Example 2; Output
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USAGE CF ADS. OVER-RIDING LEFAULT PARAMETERS, AND PROVIDING
GRADIENTS. THE THREE-BAR TRUSS.
REQUIRED ARRAYS.
DIMENSION X(3),VLB(3),VUB(.),G(2),IDG(2),IC{2),DF(3).A(2,2),
1 WK(1000),1WK(500)
DIMENSION B(2,2)
c ARRAY )IMENSIONS.
NRA=2
NCOLA=2
NRWK=1G00 _ .
NRIWK=500 ORIGINLYL PAGL e
c PARAMETERS. OF FOOR GUALITY
IGRAD=0
NDV =2
NCON=2
INITIAL DESIGN.
X(1)=1i.
X(¢)=1.
c BOUNDS .
VLB(1)=.01
VLB(Z)=.01
vUR(1)=1.08-2¢
VUB(2)=1.0E--20
c IDENTIFY COMSTFAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0
IDG(2)=0
c INPUT.
READ(5,30) ISTRAT,IOFT,IONED,IPRINT
c INITIALIZE INTERNAL PARAMETERS.
INFO=-2
CALL ADS (INFC,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NLV,NCON,X,VLB,
1 VUB,0BJ,G,IDG,NGT,IC,DF,A,NRA, NCOLA,WK, NRWK, IWK, NRIWK)
c OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND .TRMDP.
WK(3)=-0.1
WK(6)=0.002
WK(35)=1.0
IWK(4)=2
c OPTIMIZE.
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VL3,
1 VUB,0BJ,G,I1DG,NGT,IC,DF,A,NRA,NCOLA,WK, NRWK, IWK, NRIWK)
IF (INFO.EQ.C) GO TG 60
IF (INFO.GT.l) GO TO 20
c EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(L)=(2.#X(1)+SQRT(2.)*KX(2))/ (i« *X(L)*X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2-)*%(2))-1.
o GO CONTINUE WITH OPTIMIZATION.
GO TO 10

e NeNe!

9]

Figure 10: Example 3; Gradients Suvpplied by the User
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ORiG: (.

20 CONTINUE OF POOR ¢, .. -

c GRADLENT OF OBJ. ARG EER |
DF(1)=2.*SQRT{l.)
DF(2)=1.0
IF (NGT.EQ.0) GO TO 10

C CONSTRAINT GRADIENTS. USE ARRAY B FOR TEMPORARY STORAGE.
Dl=(X(1)+SQRT(X(2))**2

c G(1).

B(L,1)=—(2.*X(1)*X{1)+2.*SQRT (2. )*X(1)*X(2)+SQRT(2.)*X(2)*X(2)/
1 (2.*X(1)*X(1)*D1l)
B(2,1)=~1./(SQRT(2.)*D1)
c 6(2).
B(1,2)=-0.5/D1
B(2,2)=SQRT(2.)*B(1,2)
c STORE APPROPRIATE GRADIENTS IN ARRAY A.
DO 30 J=1,NGT
K=IC(J)
A(1,J)=B(1,K)
30 a(2,J7)=B(2,K)
GO TO 10
60  CONTLNUE
c PRINT RESULTS.
WRITE(6,40) OBJ,X(1),X(2),G(1),6(2)
STOP
30  FORMAT (4I5)
40  FORMAT (//5X,7HOPTIMUM,5X,SHOBJ =,E12.5//5X,6HX(1) =,E12.5,5X,
1 6HX(2) =,E12.5/5X,6HG(1) =,E12.5,5X,6HG(2) =,E12,5)
END

Figure 10 Concluded: Example 3; Gradients Supplied by the User
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FOCRTRAN PROGRAM
FOR
AUTOMATED DE SIGN SYNTHEGSTIS

VERSION 1.00

CONTROL PARAMETERS

ISTRAT = 0 IOPT = 4 IONED = 7 IPRINT = 2020
IGRAD = 1 NDV = 2 NCON = 2

SCALAR PROGRAM PARAMETEKRS

REAL PARAMETERS

1) ALAMDZ = 0.0 20) EXTRAP = (0.50000E+01
2) BETAMC = (.0 21) FDCH = G.10000E-01
3) cT = -0.10000E+00 22) FDCHM = (.10000E~-02
4) CTL = ~0.50000E-02 23) GMULTZ = 0.10000E+02
5) CTLMIJ = 0.10000E~02 24) PSAIZ = 0.95000E+00
6 CIMIN = (.20000E-02 25) RMULT = 0.50000E+01
7) DABALP = 0.10000E-03 26) RMVLMZ = 0.20000E+00
8) DABCBJ = 0.3&284E-03 27) RP = 0.10000E+02
9) DABOBM = 0.38284E-D3 28) RPMAX = 0.10000E+09
10) DABSTR = 0.38284E-03 29) RMULT = 0.20C00E+00
11) DELALP = (.50000E-02 30) RPPMIN = 0.10000E--07
12) DELOBJ = 0.10000E-02 31) RPPRIM = (.10000E+03
13) DELCBM = 0.500G0E-04 32) SCFO = $.10000E+01
14) DELSTR = 0.10000E-02 33) SCLMIN = 0.10000E-02
15) DLOBJ1 = 0.10000E+00 34) STOL = 0.10000E-02
16) DLOBJZ = (.10000E+04 35) THETAZ = 0.1C000E+01
17) DX1 = 0.10000E-01 36) XMULT = 0.26180EH01
18) DX2 = 0.20000E+00 37) ZrO = (.10000E-0s
19) EPSPEN = -0.50000E-01
INTEGER PARAMETERS

1) "CNDIR = 3 £) ITRMOP = 2 6) JONED = 7
2) I5CAL = 1 5) ITRMST = 2 7y JIMAX = 20

3) ITMAX = 40

Figure 1l1: Example 3 - OQutput



ARRAY STORAGE REQUIREMENTS
DIMENSIONED REQUIKZD

ARRAY SIZE SIZE
WK 1060 197
IWK 500 184

10°T = 4; METHOD OF FEASIBLE DIRECTIONS

— INITIAL DESIGN
OBJ = 0.38284E+01

DECISION VARIABLES {(X-VECTUR)
1) 0.10000E+01  0.10000E+01

L. WER BOUNDS ON THE DECISION VARIABLES (VLB-VECTOR)
1) 0.10000E-01 0.10000E-01

UPPER BOUNDS ON THE DECISION VARIABLES (VUB-VECTOR)
1) 0.10000E+21 G.10000E+21

CONSTRAINT VALUES (G-VECTOR)
1) -0.31371E+00 -0.17040E+01
— 1. .RATION 1 OBJ = 0.26874E+01
DECISION VARIABLEZS (X-VECTOR)
1) 0.71816E+00 0.65616E+00
—— ITERATION 2 OBJ = C.26398E+01
DECISION VARIABLES (X-VECTOR)
1) C 79473E+00  0.39196E+00
FINAL CPTIMIZATION RESULTS
NUMBER CF ITERATIONS = 3
OBJECTIVE = 0.2¢398E+01

CECISION VARIABLES (X-VECTOR)
1) 0.79473E+00 0.39196E+00

CONSTRAINT VALUES (G-VECTOR)
1) -0.23724E-03 -0.13526E+01

CONSTRAINT TOLORANCE, CT = -0.10000E+00 CTL = -0.50000E-02

Figure 11 Continued: Example 3 - Qutput
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THERE ARE 1 ACTIVE CONSTRAINTS AND O VIOLATED CONSTRAILNTS
CONSTRAINT NUMBERS
1
THERE ARE O ACTIVE SIDE CONSTRAINTS
TERMINATION CRITERIA

KUHN-TUCKER PARAMETER, BETA = 0.70453E-04 IS LESS THAN 0.10000E-0

OPTIMIZATION RESULTS

OBJECTIVE FUNCTION VALUE 0.26398E+01

DESIGN VARIABLES

LOWER UPPER

VARIABLE BOUND VALUE BOUND
1 0.10000E-01  0.79473E+00  0.10000E+21
2 0.10000E-01  0.39196E+00  0.10000E+21

DESIGN CONSTRAINTS

1) -0.2215E-03 -0.6294E+00

FUNCTION EVALUATIONS = 8
GRADIENT EVALUATIONS = 3
OPTIMUM OBJ = 0.26398E+01

X(1) = 0.79473E+00 X(2) = 0.39196E+00
G(1) =—0.22149E-03 G(2) =-~0.62937E+00

Figure 11 Concluded: Example 3; Output

6.0 MAIN PROGRAM FOR SIMPLIFIED USAGE OF ADS

Figure 11 is a general-purpose calling program for use with ADS.
The arrays are dimensioned sufficient to solve problems of up to 20
design variables and 100 constraints. Avrrays IC and A are dimensioned
to allow for evaluation of 30 constraint gradients. Wherever a question
mark (?) 1is given, it is understood that the user will supply the
appropriate information. Note that the statement X(I)=?, I=1,NDV 1is not
an implied FORTRAN DO LOOP, but simply denotes that the value of the NLV
design variables must be definea here.
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Subroutine EVAL i8 the user-supplied subroutine for evaluating
functions and gradients (if user-supplied).
Subroutine EVAL has the following call statement:

CALL EVAL (INFO,NDV,NCON,OBJ,X,G,DF,NGT,IC,A,NRA)

The paramneters INFO, NDV, NCON, X, NGT, IC and NRA are input to
Subroutine EVAL, whilc OBJ, G, DF and A are output. Depeunding on the
user needs, this may be simplified. For example, if IGRAD=0 and NDV and
NCCN are not required by the analysis, the calling statement may be

CALL EVAL (0BJ,X,G)

Alternatively, INFO mav be used as & print control so, after the
optimization is comolete, INFO=3 is sent tié EVAL to indicate that
analysis informatlon should be printed. Note however, that during
optimization, the value of INFO returned from ADS must be the same when
calling ADS to continue optimization (eg. it may be safer to use : ~other
user-definz:e rarameter as a print control).

c SIMPLIFIED USAGE OF THE ADS OPTIMIZATION PROGRAM.
DIMENSION X(21),VLB(21),VUB(21),G{100),IDG(100),IC(30),DF(21),
* A(21,30),WK(10000),IWK(2000)
NRA=21
NCOLA=30
NRWK=10000
NRIWK=2000
c INITIALIZATION.
IGRAD=?
NDV=?
NCON=?
X(I)=?, I=1,NDV
VLB(I)=?, I=1,NDV
VUB(I)=?, I=1,NDV
IDG(I)=? I=1,NCON
ISTRAT=?
IOPT=?
IONED="?
IPRINT=?
INFO=0
10  CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,
* VLB,VUB,OBJ,G,IDG,NGT,IC,DF,A, NRA, NCOLA,WK, NRWK , IWK , NRIWK )
CALL EVAL (INFO,NDV,NCON,OBJ,X,G,DF,NGT,IC,A,NRA)
IF (INFO.GT.0) GO TO 10
c OPTIMIZATION IS COMPLETE. PRINT RESULTS.
STOP
END

Figure 12: Program for Simplified Usage of ADS
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APPENDIX A

QUICK REFERENCE TO ADS OPTIONS

I0PT OPTIMIZER
1 Fletcher—Reeves
e 2 Davidon-Fletcher-Powell (DFP)
—3 Broydon-Fletcher-Goldfarb-Shanno (BFGS)
4 Method of Feasible Directions
4 r 5 Modified Method of Feasible Directions
STRATEGY ISTRAT IOPT 1 2 3 4 5
None 0 X X X X X
SUMT, Exterior 1 X X X 0 0
SUMT, Linear Extended Interior 2 X X X 0 0]
SUMT, Quadratic Extended Interior 3 X X X 0 0
SUMT, Cubic Extended Interior 4 X X X 0 0
Augmented Lagrange Multiplier Meth. 5 X X X 0 0
Sequential Linear Programming 6 0 0 0 X X
Method of Centers 7 0 0 0 X X
Sequertial Quadratic Programming 8 o 0 o X X
ONE~-DIMENSIONAL SEARCH IONED

Golden Section Method 1 X X X 0 0
Golden Section + Polynomial 2 X X X 0 0
Polynomial Interpolation (bounded) 3 X X X 0 0
Polynomial Extrapolation 4 X X X 0 0
Golden Section Method 5 0 0 0 X X
Golden Section + Polynomial 6 0 0 0 X X
Polyromial Interpolation (bounded) 7 0 0 0 X X
Polynomial Extrapolation 8 0 0 0 X X

NOTE: An X denotes an allowed combination of algorithms.
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APPENDIX

o

USEFUL INFORMATION STORED IN ARRAYS WK AND IWK

Arrays WK and IWK contain information calculated by ADS which is
sometimes useful in monitering the progress of the optimizetion. Tables
B-1 and B-2 identify parameters which may be of interest to the user.
Note that these parameters must not be changed by the user during the
optimization process.

TABLE B-l: REAL PARAMETERS STORED IN ARRAY WK

PARAMETER LOCATIOR DEFINITION
ALPHA 52 Move parameter in the one-dimensional search.
ALPHA3 53 Alpha at the strategy level for ISTRAT=8.
PENALT 82 The value of the penalty in SUMT methods.
SLOPF 85 The slope of the OBJ versus ALPHA function in the

one~-dimensional search.
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TABLE B-2: INTEGER PARAMETERS STORED IN ARRAY IWK
PARAMETER LOCATION DEFINITION

IDAB 23 Number of consecutive times the absolute
convergence criterion has been satisfied at the
optimization level.

IDAB3 24 Same as IDAB, but at the strategy level.

IDEL 25 Number of congsecutive times the relative
convergence criterion has been satisfied at the
optimization level.

IDEL3 26 Same as IDEL, but at the strategy level.

IFCALL 28 The number of times the objective and constraint
functions have been evaluated.

IGCALL 29 The number of times analytic gradients have been
evaluated.

IMAT 34 Pointer telling the status of the optimization
process.

0 - Optimization is complete.

1 - {nitialization is complete and coutrol is being
returned to the user to over-ride default
parameters.

= Initial function evaluation.

Calculating analytic gradients.

= Calculating finite difference gradients. NXFD
identifies the design variable being changed.

5 - One-dimensional search is being perfommed.

£ WN
[

See LGOTO.
ITER 45 Iterarion number at the optimization level.
JTER 46 Itera..on number at the strategy level.
LGOTO 54 Location in one-dimensional search.

1 - Finding bounds on the solution.

2 - Golden Section method.
3 - Polynomial interpolation after Golden Section.
4 - Polynomial interpolation after getting bounds.
5> - Polynomial interpolation/extrapolation.

NAC 58 Number of active constraints.

NACS 59 Number of active side constraints.

NVC 68 Number of violated constraints.

NXFD 69 Design variable being perturbed during finite

difference gradients.
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APPENDIX ©

SUBRGUTINES NEEDED FOR A SPECIFIED COMBINATION OF ISTRAT, IOPT AND IONED

Depending on the combination of ISTRAT, IOPT and IONED, only &
subset of subroutines contained in the ADS system are used. Therefore,
if computer memory is limited, it may be desired only to load those
routines which are actually usede This will result in “unsatisfied
externals” at run time, but on most systems the program can be executed
anyway since the unsatisfied external routines are not actually called.
Below 1s a list of the routines needed for a given combination of
algorithms. In some cases, slightly more routines are included than are
. bsolutely necessary, but they are short and a more precise list would
be undully complicated.

ALWAYS LOAD THE FOLLOWING SUBROUTINES:
ADS, ADSO01, ADSOU2, ADS004, ADS00S, ADSOU6, ADS007, ADS009, ADS010,

ADS102, ADS103, ADS105, ADS112, ADS122, ADS201, ADS206, ADS21l, ADS2l16,
ADS236, ADS401, ADS402, ADS403, ADS420, ADSS503, ADS504, ADS506, ADSSLU

STRATEGY LEVEL

Depending on the value of ISTRAT, the following subroutines are
also requirved:

ISTRAT = O, No strategy routines are added. Go to the optimizer level.
ISTRAT = 1, Add: ADSO08, ADS301, ADS302, ADSS508

ISTRAT = 2, Add: ADS008, ADS302, ADS303, ADS308, ADS508

ISTRAT = 3, Add: ADS008, ADS302, ADS304, ADS308, ADS508

ISTRAT = 4, Add: ADS008, ADS302, ADS305, ADS308, ADS508

ISTAAT = 5, Add: ADSO008, ADS302, ADS306, ADS307, ADS508

:TRA:. = 6, Add: ADS320, ADS321, ADS323, ADS333

iuTRAL = 7, Add: ADS323, ADS330, ADS331, ADS333

ISTRAT = 3, Add: ADS207, ADS217, ADS218, ADS221, ADS223, ADS310, ADS323,

ADS371, ADS375, ADS376, ADS377, ADS378, ADS404, ADS507,
ADS508, AD5509
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OPTIMIZER LEVEL

Depending on the value of IOPT, the iollowing subroutines are also
required:

IOPT = 1, Aad: ADS204, ADS2i3, ADS214, AD5509

IOPT = 2, Add: ADS213, ADS214, ADS235, ANS404, ADSS503, ADSS09Y

IOPT = 3, Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADSS509

IOPT = 4, Add: ADS201, ADS205, ADS207, ADS217, ADS218, ADS221, ADS223,
ADS507

IOPT = 5, Add: ADS201, ADS202, ADS203, ADS207, ADS209, ADS217, ADS218,

ADS221, ADS223, ADS235, ADS507

ONE-DIMENSIONAL SEARCH LEVEL

Depending on the value of IONED, the following subroutines are also
requived:

IONED = 1-4, Add: ADS116, ADS117, ADS118, ADS121, ADS126, ADS127
IONED = 5~8, Aad: ADS101, ADS104, ADS106, ADS108, ADS109, ADS110,

ADS111, ADS115, ADS119, ADS123, ADS124, ADS125,
ADS502
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APPENDIX D

ADS SYSTEM SUBROUTINES

The subroutines in the ADS system are listed here with a very brief
description of eacii. Most subroutines are internally documented, and
the user is referred “o the program listing for more details.

Generally, ADSO01-ADS099 are control level routines. ADS10l-
ADS199 are one-dimensional search level routines, ADS201-aADS299 are
optimization level routines and ADS301-ADS399 are stcategy level
routines. ADS401-~ADS499 are print routines and ADS501-ADS599 are
utility routines.

ROUTINE PURPOSE

ADS = Mai . control routine for optimization.
ADSO01 - Control one-dimensional search level.
ADS002 = Control optimizer level.

ADS003 - Control strategy level.

ADS004 - Define work array storage allocations.

ADS005 -~ Initialize scalar parameters o their default values.
ADS006 - Initialize scale factors.

ADS007 = Calculate scale factors, scale, unscale.

ADS008 - Calculate gradients of pseudo-objective for ISTRAT=1-~5.
ALS009 - Re~-order IC and A arrays.

ADSO10 = Calculates convergence criteria parameters.

ADS101 = Coefficients of linear polynomial.

ADS102 ~ Coefficients of quadratic polynomial.

ADS103 - Coefficients of cubic polynomial.

ADS104 - Zeroes of polynomial to third-order.

ADS105 = Minimums of polynomial to third-order.

ADS106 -~ Evaluate n-th order polynomial.

ADS108 - Find minimum of a function by polynomial interpolation.

ADS109 =~ Find zeroes of a function by polynomial interpolation.
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ROUTINE

PURPQSE

ADS11G

ADS111

ADS112

ADS115

ADS116

ADS117

ADS118

ADS119

ADS121

ADS122

ADS123

ADS124

ADS125

ADS126

ADS127

ADS201

AD5202

ADS203

ADS204

ADS205

ADS206

ADS207

)

Evaluate slope of n-th order polynoaial.

Polynomial infterpolation for constraint boundaries.

Find ALPMAX so NDV side constraints are encountered.
Control one-dimenslonal search for constrained functions.
Control one-dimensional search for unconstrained functions.

Polynomial interpolation of unconstrained function, within
bounds.

Polynomial interpolation of unronstrained function, no
bounds given.

Polynomial interpolation of constrained function, no bounds
given.

Find bounds on minimum of unconstrained function.
Initial interior points for Golden Section method.
Constrained one-dimensional search Ly Golden Section wethod.

Update bounds and get new interior point in Golden Section
method, constrained.

Find bounds on minimum of constrained function.

Unconstrained one-dimensional search by Golden Section
method.

Update bounds and get new interior point by Golden Section
method, unconstrained.

Identify NGT most critical constraints.
Invert matrix B and store back in B.

Delta=-X back to boundary in Modified Method of Feasible
Directions.

Fletcher~Reeves unconstrained minimization.
Method uf Feasible Directions.
X = Xold + ALPHA*S, subject to side constraints.

Maximum component (magnitude) of each column of A.
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ROUTINE PURPOSE

ADS20S - Calculate B = A-Transpose times A.
ADS211 - Update convergence parameters IDEL and IDAB.
ADS213 - Calculate initial ALPHA for one-dimensional search based on

objective function value.

ADS214 - Calculate initial ALPHA for one-dimensional search based con

X-values.
ADS21¢€ -~ Finite difference gradients of objective and constraints.
ADS217 - Solve direction-finding task for Me:chods of Feasible
Directions.

ADS218 - Solve special LP sub-problem from ADS217.

ADS221 ~ Push-off factors for Methods of Feasible Directions.
ADS223 ~ Identify active side constraints.

ADS231 - Modified Methoa of Feasible Directions.

ADS..35 - Variable Metric Methods, TOPT=2,3.

ADS226 - “earch direction for Variable Metric Methods.

ADS301 - Exterior Penalty Function Method, ISTRAT=l.

ADS302 - Calculates penalty for penalty function methods, ISTRAT=1-5.
ADS303 - Lin ar Extended Penalty Func:ion Method, ISTRAT=2.
ADS304 - Quadratic Extenaed Penalty Function Metnod, ISTRAT=3.
ADS305 - Cubic Extended Penalty Function Method, ISTRAT=4.
ADS306 - Augmented Lagrange Multiplier Method, ISTRAT=5.
ADS307 - Update Lagrange Multipliers, ISTRAT=5.

ADS308 - Calculate penalty parameters, ISTRAT=S.

ADS3.0 - Sequential )juadratic Programming, ISTRAT=8.

ADS320 - Sequential Linear Programming, ISTRAT=6.

ADS321 - Control solucion of LP sub-problem, ISTRAT=6.

ADS323 - Update move limits, ISTRAT=6,7.
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ROUTINE

PURPOSE

ADS33v

ADS331

ADS333

ADS371

ADS375

ADS376

ADS377

ADS378

ADS401

ADS402

ADS403

ADS404

ADS420

ADRSS( L

ALS502

AD5H03

ADS504

ADS5vb

ADS507

ADS508

ADS509

ADSS1i0

Merthod of Centers, ISTRAT=7.

Control solution of LP sub~problem, ISTRAT=7.
Calci late maximum cunstrainc value.

Contrcl solution of QP sub-problem, ISTRAT=8.
Temporary objective, ISTRAT=8.

Gradient of pseudo-objective for one-dimensjional
ISTRAT=8.

Change in objective gradients, ISTRAT=3.
Update dessian matrix, ISTRAT=8.

Print arrays.

Frint array title and array. Calls ADS40l.
Prirt scalar control parameters.

frint Hessian matriz.

Print final optimization results.

Evaluate scalar product of two vectors.
Find maximum component or vector.

Zquate IWO vectors.

Matrix-vector product.

search,

Inftialize symmetric matrix to the identicy matrix.

Normalize vector by dividing by maximum compcnent.

Calculate gradient of pseudo-objective for ISTRAT=1-5.

Called by ADSQ08.
identity active side constraints.

Scale, unscole the X-vector.
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